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Scalar Product

Definition
A scalar product of two vectors
v=(V,...,Vp),w = (wq,...,w,) € R"is the real number
n
V-w = Z Viw;.
i=1
Example

Let v =(1,0,-2,3),w = (0,2,2,1) € R*. Then
v-w=1-0+0-2—-2-2+3-1=—1.



Properties of Scalar Product

Let v,v/,w,w’ € R" and let « € R. Then
) v-w=w-v,

i) (av)-w=a(v-w),

i) (v+v)-w=v-w+v -w, v-(w+w)=v-w+v-w,
)

iv) v-v>0forv#D0.



Length of a Vector

Definition
The length of a vector v = (v1,...,v,) € R" is the number

HVH=\/V'V=\/V12+V22+...+V,%.

Obviously |v| = 0 and
[v|[=0 < v=0.

Note that if & € R then |av| = |a||v|. In particular, if v # 0 then

v
v

= 1. The vector ﬁ is called the normalized vector of v.

Definition
Two vectors v, w € R" are said to be orthogonal (or
perpendicular) if v-w = 0. We write v L w.



Pythagorean Theorem

Example

Let v=(3,0,4),w = (0,1,0),u = (1,1,1). Then

Iv|| = v/32 + 02 + 42 = /9 + 16 = 5. The normalized vector of v
is £(3,0,4). Since v-w =3-0+0-1+4-0=0then v L wbutw
is not orthogonal to u because w - u = 1.

Theorem (Pythagoras)
If v L wthen |v+ w|?=|v|?+ |w|?

Proof.

Iv+wlP=WV+w) - (v+w)=v-v+v-wH+w-v+w- -w-=
2 2

[vI® + llwl*. O



Orthogonal Complement

Let Ac R” be any set. Let
Al = {(weR"|w-v=0forall veA}.

The set Al is a subspace of R".

Definition
Let V < R" be a subspace. The orthogonal complement of V in
R is V*.

Example
Let V =lin((1,2)) < R2. Then V' =lin((2,-1)).



Properties

Proposition
Let vi,...,v € R". Then
|in(V1, ey Vk)L = {Vl, ey Vk}l.
Proof.
Set V = lin(vy,...,vk). Assume w € VL. Then, in particular,
w-v; =0, hence V1 < {vi,..., v}t fw-v; =0 for

i=1,...,kthenforany o; eR, i=1,...,k
W-(a1v1+a2v2+...+akvk)=a1(w-v1)+a2(w~vz)+...+ak(w~vk)=0.

O



Properties (continued)

Proposition
Let Vc R", dimV = k. ThendimV+ =n—k and VA V+=0.

Proof.
Let vq,... vk be a basis of V, where v; = (aj1, aj2, ..., ain). By the
above Proposition (xi,...,x,) € V' if and only if it is a solution of

the system of linear equations

ailxy + apxe + ... + ainxp =0
aixy + apxs + ... + amxp, =0
akix1 + akexa + ... 4+ akpxn =0



Properties (continued)

Proof.

dil1 ... din
The rank of the matrix oo, is equal to k, hence by
akl ... dkn
the Kronecker-Capelli theorem the dimension of the set of solutions
is n — k. Moreover, if we V n VL then w- w = 0 hence
w = 0. O

Proposition
Let V = R" be a subspace. Then (V1) = V.

Proof.
By the above dim(V+)t = n—dim V+ = n— (n —dim V). Since
V < (V5T and both have the same dimension they are equal. [J



Example

Let V < IR? be subspace given by the linear equation

2x; +3x = 0. Then V =lin((—3,2)) and V+ =lin((2,3)).
This can be generalized to

Proposition

Let V < R" be equal to the set of solutions of the system of linear
equations

ailxy + awpxXe + ... + ainpXp 0
asxi + apxo 4+ ... 4+ amx, =0
ak1x1 + akxe + ... 4+ akxp =0

Then

VL = |in((311, d12, ... ,al,,), ey (akl, dKo,y ... ,ak,,)).



Proof.
Let v; = (aj1,ai2,...,ain) for i =1,... k. Then

V = {Vl, Vo, ..., Vk}J'.
Hence
vi= ({vi,va,..., vk}i)L = (lin(vy, va, ..., vk)i)L =
= |in(V1,V2,...,Vk).
Example

Let V < R* be equal to the set of solutions of the system
2x1 4+ 3x + 4x3 + 6x4 =0

{ x1 — 2x» + bx3 =0

Then V- =1in((2,3,4,6), (1,-2,5,0)).



Orthogonal Basis

Definition
Let A = (v1,..., V) be a basis of R”. The basis A is said to be
orthogonal if v; L vj for i # jand i,j =1,...,n. The basis A is

said to be orthonormal if it is orthogonal and ||v;|| = 1 for
i=1,...,n,i.e each vector is of length 1.
Examples

i) the standard basis ;7 = (1,0,0,...,0),ex =
(0,1,0,...,0),...,e, = (0,0,0,...,1) of R" is orthonormal,

i) the basis (—1,2,2),(2,—1,2),(2,2,—1) is an orthogonal basis
of R? (but not orthonormal),

iii) the basis (—1,%,2),(3,-1,2),(3,3,—1) is an orthonormal

basis of R3.



Coordinates Relative to Orthonormal Basis

Proposition
Let vq,...,vi be an orthogonal basis of the subspace V < R". For
anyveV

V-V V- V- Vg

vV = Vi + Vo + ...+ V.

vi-wvi Vo - V2 Vi - Vk
Proof.
There exist unique «; € R such that v =a3v; + ... + agvk.
Therefore

vevi=ag(viovi) + oo Fai(viovi) o ag(vee vi) = ai(viev),

since v; - v; = 0 for i # J. O



Existence of Orthogonal Basis

Example

The coordinates of the vector (1,1, 1) relative to the orthogonal
basis (—1,2,2),(2,~-1,2),(2,2,—1) of R3 are %, %,% since
(17171)(_17272) — (17171)(27_172) — 7171)(2727_1)

1 011212 1 (1,11)(22-1) 1 g
(_17272)'(_17272) R (27_172)'(27_172) 3 (2727_1)'(2727_1) 3T

1 1 1
(17 1) 1) = 5(_172)2) + 5(2’_1)2) + 5(2’27 _1)

Proposition
Any subspace V < R" has an orthogonal basis.

Proof.

A proof will be given later.



Example

Example

Let V < R3 be given by the equation x; + x; + x3 = 0. We
compute inductively an orthogonal basis of V' by choosing vectors
orthogonal to the previously chosen ones. Let v{ = (1,0,—1). To
find v} € V such that vj L v} solve

xx1 + x + x3 =0 21 + x =0
X1 - X3 = 0 X1 - X3 = 0
< xp = —2x1, x3 = x1. For example vj = (1,—2,1). Since

dim V = 2 vectors vj, v5 form an orthogonal basis of V. By taking
normalized vectors we get an orthonormal basis

75(1,0,-1), 7=(1,-2,1) of V.



Orthogonal Decomposition

Proposition

Let V < R" be a subspace. Then any vector w € R" can be
written uniquely as

w=v+v- whereveV, vte VvVt

Proof.
Let vq,..., vk be a basis of V and let vxi1,..., Vv, be a basis of
VL. Then

aivi+ ...+ agve =0
aivi+...+apv, =0 1A k¥k —
Qk41Vk+1 + .-+ apvy, =0

— a;=...=a,=0,

hence B = (v1,...,Vvy) is a basis of R". This proves the existence
of a decomposition.



Orthogonal Decomposition (continued)

Proof.
If
W=v+vL=u+ui,

where v,ue V, vt ut e V1, then
v—u=ut—vteVnVt={0}

Therefore



Orthogonal Projection and Reflection

Definition
For any subspace V < R” the function P\ : R" — R" defined by

Py(w) = v, where w = v+ vt ve V, vte Vi

is a linear transformation called the orthogonal projection on the
subspace V.

Note that with the above notation Py (w) = v*, that is
w = Py(w) + Pyi(w).



Orthogonal Projection and Reflection (continued)

Definition
For any subspace V < R” the function Sy : R" — R" defined by

1

Syw)=v—v', wherew=v+vhveV, vievt
b M b M

is a linear transformation called the orthogonal reflection across
the subspace V.

Note that

Sy(w) = Py(w) — Pyi(w) =2Py(w) — w.



Properties

Example
Let V = lin(v). Then Py (w) = *Zv.
Proposition

i) Py(w)e Vand (P,(w) =w < weYV),
ii) let d(w, V) =min{|w — v|| | ve V} be the distance between
the vector w and the subspace V. Then Py (w) is the unique
vector in V such that d(w, V) = |lw — Py(w)

iii) ifvi,..., vk is an orthogonal basis of V then

’

w - vp W - Vo W - Vi
Pv(W)Z Vi + o+ ...+
Vi-wv Vo - Vo Vi - Vi



Properties (continued)

Proof.

ii) recall w = Py (w) + Py1(w), then for any v € V, by the
Pythagorean theorem |w — v|?> = |(Py(w) — v) + Pyo(w)|? =
1Py (w) — v|2 + |PyL(w)|? = ||PyL(w)|? so the minimum is
attained if v = Py (w).

an WV WV 1
i) w— (kv + o2 ve + ..+ g v € Vo




Properties (continued)

Proposition

Let V < R" be a subspace. Then
i) PyoPy =Py,
) Sy oSy = idgn,

i) Py 4+ PyL = idgn,

iv) Sy = —=Sy1.

Example
Let V = {(x1,x2,x3,x3) € R* | xg — xo + 2x3 — 2x4 = 0} and
w = (1,0,1,—1). Compute Py(w). By definition
VL =lin((1,-1,2,-2)). Then

w-(1,—1,2,-2) 1
Pys(w) = bt (1,-1,2,-2) = §(1,-1,2,-2),
Hence Py(w) = w — Py (w) = (3,3,0,0).




Gram-Schmidt process

Let vi,..., v, be a basis of the subspace V < R". The
Gram-Schmidt process is an inductive way of computing an
orthogonal basis wy, ..., wy of V.

By induction

i) for i =1 set
wp = v, W1 = |in(W1),

i) for 1 <i < k set
wi = vi — Pw,_,(vi),

Wi =lin(wy, ..., w;).



Gram-Schmidt process (continued)

Proposition (Gram-Schmidt)

With notation as above fori =1,...,k
i) wi,...,w; is an orthogonal basis of W;,
i) Wi =lin(vy,...,v).

Since W), = V vectors W1, e, W form an orthogonal basis of V.
The normalized vectors A form an orthonormal basis of

V.

\le""’ ”Wk”



Example

Let vi = (1,0,0,1),v» = (1,1,0,0),v3 = (0,1,1,1) € R*. Then
wp = vq, W1 = |in(W1),

W]- = (1?07 0? 1)'

we = v2 — Py, (v2) = vo — 200w,

wy = (1,1,0,0) — %(170)07 1) = %(1,2,0,—1), W, = lin(w1, wa)
ws = v3 — Py, (v3) = v3 — 250wy — 252w,

ws = (0,1,1,1) — $(1,0,0,1) — £(1,2,0,-1) =

%(—2,2,3,2), W3 = |in(W1, wo, W3).

Therefore (1,0,0,1),(1,2,0,—1),(—2,2,3,2) is an orthogonal
basis of V' = lin(vy, v», v3). Moreover

%(1,0,0, 1), %(1,2,0,—1), \/%(—2,2,3,2) is an orthonormal
basis of V.

Remark

Note that Vv = (av)(o(‘;?/) (av).



