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Endomorphism

De�nition

Let V be a vetor spae and A its (ordered) basis. A linear

transformation ϕ : V ÝÑ V is alled a linear endomorphism.

The matrix MpϕqA
A

is alled matrix of endomorphism relative to

basis A. It is denoted in short MpϕqA.

Example

The identity id : V ÝÑ V is a linear endomorphism and its matrix

relative to any basis A is the identity matrix

MpidqA “

»

—

–

1 0

.

.

.

0 1

fi

ffi

fl
P Mpn ˆ n;Rq,

where n “ dimV .



Example

Let

s : R2 ÝÑ R
2,

r : R2 ÝÑ R
2,

k : R
2 ÝÑ R

2,

p : R
2 ÝÑ R

2.

be linear endomorphisms of R
2

de�ned as follows: s is a re�etion

of R
2

about the x
1

-axis, r rotation about the origin of R
2

(i.e.

p0, 0q) by π
2

radians (i.e. 90 degrees) ounter-lokwise, k is saling

by ´2 in all diretions (also alled uniform saling) and p is

projetion onto the x
2

-axis.



Example (ontinued)

For example, if v “ p2, 1q then

spvq “ p2,´1q, rpvq “ p´1, 2q, kpvq “ p´4,´2q, ppvq “ p0, 1q.
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Example (ontinued)

spx
1

, x
2

q “ px
1

,´x
2

q, rpx
1

, x
2

q “ p´x
2

, x
1

q,

kpx
1

, x
2

q “ p´2x
1

,´2x
2

q, ppx
1

, x
2

q “ p0, x
2

q.

The matries of these endomorphisms relative to the standard basis

st “ pp1, 0q, p0, 1qq look as follows:

Mpsqst “

„

1 0

0 ´1



, Mprqst “

„

0 ´1

1 0



,

Mpkqst “

„

´2 0

0 ´2



, Mppqst “

„

0 0

0 1



.

Take di�erent basis, for example A “ pp1, 2qp1, 1qq. The

hange-of-oordinate matrix is

MpidqAst “ pMpidqstAq´1 “

„

1 1

2 1

´1

“

„

´1 1

2 ´1



.



Example (ontinued)

Reall, A “ pp1, 2qp1, 1qq and MpidqAst “

„

´1 1

2 ´1



.

sp1, 2q “ p1,´2q “´3p1, 2q ` 4p1, 1q,

sp1, 1q “ p1,´1q “´2p1, 2q ` 3p1, 1q,

rp1, 2q “ p´2, 1q “ 3p1, 2q ´ 5p1, 1q,

rp1, 1q “ p´1, 1q “ 2p1, 2q ´ 3p1, 1q,

kp1, 2q “ p´2,´4q“´2p1, 2q ` 0p1, 1q,

kp1, 1q “ p´2,´2q“ 0p1, 2q ´ 2p1, 1q,

pp1, 2q “ p0, 2q “ 2p1, 2q ´ 2p1, 1q,

pp1, 1q “ p0, 1q “ 1p1, 2q ´ 1p1, 1q.

MpsqA “

„

´3 ´2

4 3



, MprqA “

„

3 2

´5 ´3



,

MpkqA “

„

´2 0

0 ´2



, MppqA “

„

2 1

´2 ´1



.



Example (ontinued)

We see that matries of simple linear transformations look `nie'

relative to some bases and `not-that-nie' relative to the others.

That aim of this leture if to �nd a way of omputing those `nie'

ones in the general ase. Note that determinants and the ranks of

orresponding matries did not hange.



Matrix Similarity

De�nition

Two matries A,B P Mpn ˆ n;Rq are alled similar if there exists

an invertible matrix C P Mpn ˆ n;Rq suh that

A “ C´1BC .

Proposition

Let ϕ : V ÝÑ V be a linear endomorphism of a �nite dimensional

vetor spae V . For any two bases A,B of V the matries MpϕqA
and MpϕqB are similar.

Proof.

MpϕqBB “ Mpid ˝ ϕ ˝ idqBB “ MpidqBAMpϕqAAMpidqAB .

Therefore

MpϕqB “ C´1MpϕqAC ,

where C “ MpidqA
B
.



Example

Let ϕppx
1

, x
2

qq “ px
1

` x
2

, 2x
1

` 3x
2

q be a linear endomorphism

ϕ : R2 ÝÑ R
2

. Take A “ st and B “ pp´2, 1q, p1,´1q. Then

MpϕqA “

„

1 1

2 3



and C “ MpidqAB “

„

´2 1

1 ´1



.

Use MpϕqB “ C´1MpϕqAC and ompute C´1 “

„

´1 ´1

´1 ´2



.

Then

MpϕqB “

„

´1 ´1

´1 ´2

 „

1 1

2 3

 „

´2 1

1 ´1



“

„

2 1

3 2



.

On the other hand,

ϕpp´2, 1qq “ p´1,´1q “ 2p´2, 1q ` 3p1,´1q,

ϕpp1,´1qq “ p0,´1q “ p´2, 1q ` 2p1,´1q.



Similar Matries and Endomorphisms

Theorem

Let V be n-dimensional vetor spae and let A,B P Mpn ˆ n;Rq.
Then

A,B are similar ðñ there exists an endomorphism ϕ : V ÝÑ V

and bases A,B of V suh that MpϕqA “ A and MpϕqB “ B .

Proof.

pðq was done before.

pñq there exits an invertible matrix C P Mpn ˆ n;Rq suh that

B “ C´1AC . Let A be any basis of the vetor spae V and let ϕ

be the unique linear endomorphism given by the ondition

MpϕqA
A

“ A. If B is given by the ondition C “ MpidqA
B

then

B “ MpϕqB.



Eigenvalues and Eigenvetors

De�nition

Let ϕ : V ÝÑ V be a linear endomorphism of a �nite dimensional

vetor spae V . A onstant λ P R is alled eigenvalue of ϕ if

there exists a non-zero vetor v P V suh that

ϕpvq “ λv .

Suh vetor v is alled an eigenvetor of ϕ assoiated to the

eigenvalue λ.

Remark (geometri interpretation)

A vetor v P V is an eigenvetor of ϕ if and only if

ϕplinpvqq Ă linpvq and linpvq ‰ t0u, i.e. v is a non-zero vetor and

the line spanned by v is mapped into itself.



Eigenvalues and Eigenvetors (ontinued)

Let ϕ : V ÝÑ V be a linear endomorphism. For any eigenvalue λ

of ϕ let Vpλq denote the set of all eigenvetors assoiated to λ

together with the zero vetor, i.e.

Vpλq “ tv P V | ϕpvq “ λv .u

Proposition

The subset Vpλq Ă V is a subspae of V .

Proof.

Let v ,w P Vpλq. Then

ϕpv ` wq “ ϕpvq ` ϕpwq “ λv ` λw “ λpv ` wq. Hene
v ` w P Vpλq. For any α P R we have ϕpαvq “ αϕpvq “ λpαvq.
Hene αv P Vpλq.

For any eigenvalue λ of ϕ the subspae Vpλq is alled the

eigenspae assoiated to λ. It is straightforward that

ϕpVpλqq Ă Vpλq.



Example

Let s : R2 ÝÑ R
2

be a re�etion of R
2

about the x
1

-axis. Then

Vp1q “ linpp1, 0qq and Vp´1q “ linpp0, 1qq. The rotation r about the

origin of R
2

by

π
2

radians ounter-lokwise has no eigenvalues (no

line is mapped into itself). In the ase of uniform saling k by ´2

in all diretions any non-zero vetor is eigenvetor assoiated to

´2, i.e. Vp´2q “ R
2

.The projetion p onto the x
2

-axis has two

eigenspaes: Vp0q “ linpp1, 0qq and Vp1q “ linpp0, 1qq.
Note that for s, k and p there exist a basis (the standard one)

onsisting of eigenvetors. The matries of those endomorphisms in

the standard basis are diagonal.

Mpsqst “

„

1 0

0 ´1



, Mpkqst “

„

´2 0

0 ´2



,

Mppqst “

„

0 0

0 1



.



Charateristi Polynomial

De�nition

Let A P Mpn ˆ n;Rq. The polynomial wApλq “ detpA ´ λInq is

alled the harateristi polynomial of A.

The degree of wApλq is equal to n.

Example

Let A “

„

4 2

3 3



. Then

wApλq “ det

„

4 ´ λ 2

3 3 ´ λ



“ p4´λqp3´λq ´6 “ λ2 ´7λ`6.

Proposition

Let A,B P Mpn ˆ n;Rq be similar matries. Then wA “ wB .

Proof.

There exists an invertible matrix C suh that A “ C´1BC . But

wApλq “ detpA ´ λInq “ detpC´1BC ´ C´1λInC q “
detpC´1pB ´ λInqC q “ pdetC q´1 detpB ´ λInq detC “ wBpλq.



Charateristi Polynomial (ontinued)

De�nition

Let ϕ : V ÝÑ V be a linear endomorphism of a �nite dimensional

vetor spae V . The harateristi polynomial wϕ of ϕ is the

harateristi polynomial of matrix MpϕqA where A is a basis of V .

By the previous proposition the harateristi polynomial of ϕ does

not depend on the basis A.



Finding Eigenvalues and Eigenvetors

Theorem

Let ϕ : V ÝÑ V be a linear endomorphism of a �nite dimensional

vetor spae V .

i) α P R is an eigenvalue of ϕ ðñ α is a root the harateristi

polynomial of ϕ,

ii) let A “ pv
1

, . . . , vnq and A “ MpϕqA. The vetor

v “ x
1

v
1

` . . . ` xnvn is an eigenvetor of ϕ assoiated to α if

and only if

pA ´ αInq

»

—

–

x
1

.

.

.

xn

fi

ffi

fl
“

»

—

–

0

.

.

.

0

fi

ffi

fl
.



Finding Eigenvalues and Eigenvetors (ontinued)

Proof.

Let v “ x
1

v
1

` . . . ` xnvn. Then ϕpvq “ αv if and only if

A

»

—

–

x
1

.

.

.

xn

fi

ffi

fl
“ α

»

—

–

x
1

.

.

.

xn

fi

ffi

fl
ðñ pA ´ αInq

»

—

–

x
1

.

.

.

xn

fi

ffi

fl
“

»

—

–

0

.

.

.

0

fi

ffi

fl
.

From the previous leture we know that there exists a non-zero

solution of the latter if and only if detpA ´ αInq “ 0, i.e.

wApαq “ 0.



Example

Let ϕ : R3 ÝÑ R
3

be an endomorphism of R
3

given by

ϕpx
1

, x
2

, x
3

q “ p4x
1

` 4x
2

,´x
1

, x
1

` 3x
2

` 3x
3

q. Its matrix in the

standard basis is A “ Mpϕqst “

»

–

4 4 0

´1 0 0

1 3 3

fi

fl

.

A ´ λI “

»

–

4 ´ λ 4 0

´1 ´λ 0

1 3 3 ´ λ

fi

fl .

Hene wϕpλq “ detpA ´ λI q “ p3 ´ λqpp4 ´ λqp´λq ` 4qq “
p3 ´ λqpλ2 ´ 4λ ` 4q “ p3 ´ λqp2 ´ λq2. There are two eigenvalues

λ
1

“ 2 and λ
2

“ 3. To �nd Vp2q we solve a system of linear

equations:

Vp2q :

»

–

2 4 0

´1 ´2 0

1 3 1

fi

fl

»

–

x
1

x
2

x
3

fi

fl “

»

–

0

0

0

fi

fl .



Example (ontinued)

»

–

2 4 0

´1 ´2 0

1 3 1

fi

fl

r
1

`2r
2

r
3

`r
2ÝÑ

»

–

1 2 0

0 1 1

0 0 0

fi

fl

r
1

´2r
2ÝÑ

»

–

1 0 ´2

0 1 1

0 0 0

fi

fl .

Therefore x
1

“ 2x
3

, x
2

“ ´x
3

, x
3

P R, i.e.

Vp2q “ tp2x
3

,´x
3

, x
3

q | x
3

P Ru “ linpp2,´1, 1qq.

Vp3q :

»

–

1 4 0

´1 ´3 0

1 3 0

fi

fl

»

–

x
1

x
2

x
3

fi

fl “

»

–

0

0

0

fi

fl .



Example (ontinued)

»

–

1 4 0

´1 ´3 0

1 3 0

fi

fl

r
1

`r
2

r
3

`r
2ÝÑ

»

–

0 1 0

´1 ´3 0

0 0 0

fi

fl

r
2

`3r
1ÝÑ

»

–

1 0 0

0 1 0

0 0 0

fi

fl .

Therefore x
1

“ x
2

“ 0, x
3

P R, i.e.

Vp3q “ tp0, 0, x
3

q | x
3

P Ru “ linpp0, 0, 1qq.



Example (ontinued)

Reall that

ϕpx
1

, x
2

, x
3

q “ p4x
1

` 4x
2

,´x
1

, x
1

` 3x
2

` 3x
3

q,

Vp2q “ linpp2,´1, 1qq,

Vp3q “ linpp0, 0, 1qq,

and hek those diretly

ϕp2,´1, 1q “ p4,´2, 2q “ 2p2,´1, 1q,

ϕp0, 0, 1q “ p0, 0, 3q “ 3p0, 0, 1q.



Remarks

i) if ϕ : V ÝÑ V and dimV is odd then the degree of wϕ is odd

therefore it has at least one real root so there exists an

eigenvetor of ϕ,

ii) dimVpαq ď multipliity of the root α in wϕ, f. the last

example (2 is a root of multipliity 2 but dimVp2q “ 1),

iii) if A P Mpn ˆ n;Rq then wApAq “

»

—

–

0 . . . 0

.

.

.

.

.

.

.

.

.

0 . . . 0

fi

ffi

fl
, i.e. matrix

A substituted to its harateristi polynomial gives the zero

matrix (Cayley-Hamilton theorem).



Example

Let A “

„

1 3

1 1



and wApλq “ λ2 ´ 2λ ´ 2. Then

wApAq “

„

1 3

1 1



2

´ 2

„

1 3

1 1



´ 2

„

1 0

0 1



“

“

„

4 6

2 4



`

„

´2 ´6

´2 ´2



`

„

´2 0

0 ´2



“

„

0 0

0 0



.


