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Linearly (In)dependent Vectors

Let V be a vector space.

Definition
Vectors v1, . . . , vk P V are said to be linearly dependent if there
exist real numbers α1, . . . , αk , not all of which are 0 such that

α1v1 ` . . . ` αkvk “ 0.

Vectors v1, . . . , vk P V are said to be linearly independent if they
are not linearly dependent.

By definition, vectors v1, . . . , vk are linearly independent if
α1v1 ` . . . ` αkvk “ 0 implies that α1 “ . . . “ αk “ 0.

Linear independence does not depend on the order of vectors hence
we may talk about independent (finite) sets. We assume that
empty set is linearly independent.



Examples

i) vectors p1, 1, 2q, p1, 1, 0q, p2, 2, 1q P R
3 are linearly dependent

because p1, 1, 2q ` 3p1, 1, 0q ´ 2p2, 2, 1q “ p0, 0, 0q,

ii) vectors p1, 2q, p0, 1q P R
2 are linearly independent,

iii) vectors p1, 2q, p0, 1q, p0, 0q P R
2 are linearly dependent,

iv) vectors p1, 2q, p2, 4q P R
2 are linearly dependent,

v) vector εi “ p0, . . . , 0,

i

q1, 0, . . . , 0q P R
n with 1 at the i-th

coordinate and 0 elsewhere is called unit vector. Vectors
ε1, . . . , εn are linearly independent.



Properties

Proposition

Single vector v P V is linearly independent if and only if v ‰ 0.

Proposition

Any subset of linearly independent vectors is linearly independent.

Proposition

A set of at least two vectors is linearly dependent if and only if one
vector is a linear combination of the others.



Steinitz’s Theorem

Theorem (Steinitz’s Theorem)

If vectors w1, . . . , wm P linpv1, . . . , vnq are linearly independent then
m ď n.

We postpone the proof of this theorem until the end of the lecture.

For example, since R
n “ linpε1, . . . , εnq any independent set of

vectors in R
n has at most n elements.



Basis

Definition
Vectors v1, . . . , vn P V form a basis of the vector space V if:

i) they are linearly independent,

ii) V “ linpv1, . . . , vnq, i.e. they span V .

In general, a vector space can have many bases.



Examples

i) vectors p1, 2q, p0, 1q P R
2 form a basis of R2,

ii) vectors p1, 0q, p0, 1q P R
2 form a basis of R2,

iii) vectors ε1, . . . , εn form a basis of Rn. It is called the standard

basis,

iv) the set of solutions of a homogeneous system of linear
equations is a vector space, its basis can be computed by
substituting subsequently each free variable with 1 and the
other free variables with 01s.



Example

Consider the following general solution of a homogeneous system

of linear equations:

"
x1 “ 2x2 ` 4x4 ` x5

x3 “ ´ 3x4 ´ x5

The free variables are x2, x4 and x5. By substituting
x2 “ 1, x4 “ x5 “ 0 and then x4 “ 1, x2 “ x5 “ 0 and
x5 “ 1, x2 “ x4 “ 0 we get three vectors
p2, 1, 0, 0, 0q, p4, 0, ´3, 1, 0q, p1, 0, ´1, 0, 1q which form a basis of
the space of all solution. In fact, every solution can be uniquely
written in the form

p2x2 ` 4x4 ` x5, x2, ´3x4 ´ x5, x4, x5q “
x2p2, 1, 0, 0, 0q ` x4p4, 0, ´3, 1, 0q ` x5p1, 0, ´1, 0, 1q, x2, x4, x5 P R.



Dimension

Proposition

If a vector space V has a basis consisting of n vectors than any
other basis has n vectors.

Definition
A vector space V is said to be n-dimensional if it has basis
consisting of n vectors. We write dim V “ n and say n is
dimension of V . It is assumed that dimt0u “ 0. A
finite-dimensional vector space is a space of dimension 0, 1, 2 . . .,
otherwise it is infinite-dimensional and write dim V “ 8.



Examples

i) dimR
n “ n,

ii) if VU Ă R
n is a subspace consisting of solutions of a

homogeneous system of linear equations U then dim VU “the
number of free variables,

iii) dimR
8 “ 8 since it contains arbitrarily many independent

vectors.



Linear Independence and Linear Span

Proposition

Let v1, . . . , vk`1 P V and let v1, . . . , vk be linearly independent
vectors. Then

v1, . . . , vk`1 are linearly independent ô vk`1 R linpv1, . . . , vkq.

Proof.
pðq Assume that α1v1 ` . . . ` αk`1vk`1 “ 0. Then αk`1 “ 0, by
assumption. Vectors v1, . . . , vk are linearly independent hence
α1 “ . . . “ αk “ 0.



Properties

Proposition

Let V be a vector space. The following conditions are equivalent:

i) vectors v1, . . . , vn form a basis of V ,

ii) vectors v1, . . . , vn form a minimal set spanning V ,

iii) vectors v1, . . . , vn form a maximal linearly independent set in
V .

iq ñ iiq basis is a set spanning V , if removing say vn, makes it a
smaller set spanning V , then by the previous Proposition
vn R linpv1, . . . , vn´1q,
iiq ñ iiiq a minimal set spanning V must be linearly independent
since otherwise you could make it smaller by removing dependent
vectors, it is maximal linearly independent set in V again by the
previous Proposition,
iiiq ñ iq it is enough to show that v1, . . . , vn span V , if they do
not, by the previous Proposition, you could make it bigger
contradicting maximality.



Properties (continued)

Proposition

Let v1, . . . , vk P V are independent vectors. Then

i) k ď dim V ,

ii) v1, . . . , vk form a basis of V if and only if k “ dim V .

iii) if W Ă V is a subspace then dim W ď dim V . If
dim W “ dim V then V “ W ,

iv) dim linpv1, . . . , vkq “ k if and only if v1, . . . , vk is a basis of
linpv1, . . . , vkq.

Proof.

i) by the Steinitz’s Theorem,

ii) pðq if k “ dim V and vk`1 P V z linpv1, . . . , vkq then one can
find dim V ` 1 linearly independent vectors in V ,

iii) as in iiq,

iv) this is iq with V “ linpv1, . . . , vkq.



Coordinates

Proposition

Vectors v1, . . . , vn form a basis of V if and only if any vector v P V
can be uniquely written (up to the order of summands) as
v “ α1v1 ` . . . αnvn.

Proof.
pñq basis spans the vector space V , hence any vector v P V is a
linear combination of v1, . . . , vn. If v “ α1v1 ` . . . αnvn and
v “ β1v1 ` . . . βnvn then 0 “ pα1 ´ β1qv1 ` . . . pαn ´ βnqvn. This
gives αi “ βi for i “ 1, . . . , n.

pðq By assumption v1, . . . , vn span the vector space V . To prove
they are linearly independent take v “ 0.



Coordinates (continued)

Definition
Let B “ pv1, . . . , vnq be an ordered basis of V . If
v “ α1v1 ` . . . αnvn the unique numbers α1, . . . , αn are called the
coordinates of v relative to the basis B.

For example, let B “ pε1, ε2, ε3q, B1 “ pε2, ε3, ε1q and
B2 “ pp0, 0, 3q, p0, 2, 0q, p1, 0, 0qq be three bases of R3. The
coordinates of the vector v “ p1, 2, 3q relative to the basis B are
1, 2, 3, relative to the basis B1 are 2, 3, 1 and relative to the basis
B2 are 1, 1, 1 since

p1, 2, 3q “ 1p1, 0, 0q ` 2p0, 1, 0q ` 3p0, 0, 1q,

p1, 2, 3q “ 2p0, 1, 0q ` 3p0, 0, 1q ` 1p1, 0, 0q,

p1, 2, 3q “ 1p0, 0, 3q ` 1p0, 2, 0q ` 1p1, 0, 0q.



Linear Independence and Elementary Operations

Let V be a vector space.

Proposition

Assume that vectors v1, v2, . . . , vk P V are linearly independent
and α P R ´ t0u. Then

i) the vectors v1 ` v2, v2, v3, . . . , vk are linearly independent,

ii) the vectors αv1, v2, v3, . . . , vk are linearly independent.

Proof.
Assume that v1, . . . , vk are linearly independent. The expression
α1pv1 ` v2q ` α2v2 ` α3v3 ` . . . ` αkvk “ 0 can be rewritten as
α1v1 ` pα1 ` α2qv2 ` α3v3 ` . . . ` αkvk “ 0. By assumption
α1 “ α1 ` α2 “ α3 “ . . . “ αk “ 0 so αi “ 0. The second case
can be proven in a similar way.



Linear Independence and Elementary Operations

(continued)

Corollary

Let v1, . . . , vn P V and α P R. The vectors v1, . . . , vn form a basis
of V if and only if the vectors v1 ` αv2, v2, v3, . . . , vn form a basis
of V .



Proof of Steinitz’s Theorem

Theorem (Steinitz’s Theorem)

If vectors w1, . . . , wm P linpv1, . . . , vnq are linearly independent then
m ď n.

Proof.
Assume that w1, . . . , wm are linearly independent and m ą n. Let
aij P R be the numbers given by conditions

wi “ ai1v1 ` ai2v2 ` . . . ` ainvn for i “ 1, . . . , m.

Let A “ raijs for i “ 1, . . . , m, j “ 1, . . . , n be an m-by-n matrix.
Elementary row operations on A correspond to elementary
operations on vectors w1, . . . , wm. Since the matrix A has more
rows than columns it has a zero row in its reduced echelon form
which contradicts the assumption.


