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Sum and Scalar Multiplication

Proposition

Let V', W be vector spaces. Let p,v : V — W be linear
transformations and let oo € R. The transformation

o+ : V— W, defined by (¢ +¢)(v) = p(v) + (v) for

v € V, and the transformation cvp defined by (ap)(v) = ap(v)
are linear. The transformation @ + v is called a sum of ¢ and
and avp is called a product of the transformation ¢ with scalar .

Example

Let o, 1) : R3 — R? are given by

o((x1,x2,x3)) = (x1 + 2x2 — x3,x1 + 2x2 + x3) and

UY((x1,x2,x3)) = (—x1 + X2 + x3,3x1 —2x2 + x3). Fix a = 2. Then
(QD + w)((Xl,X2,X3)) = (3X2,4X1 + 2X3) and

(2¢)((x1,x2,x3)) = (2x1 + 4x2 — 2x3,2x1 + 4x2 + 2x3).



Composition

Proposition

Let U,V, W be vectors spaces and let p: U — V, ¢ :V — W
be linear transformations. The transformation o p: U — W,
defined by (¢ o v)(v) = ¥(p(v))) for v e U, is linear. It is called
the composition of ¢ with .



Example

Let ¢ : R3 — R? and 9 : R? — R? be linear transformations
given by o((x1,x2,x3)) = (x1 — x2 + 2x3, —x1 + 3x2 — x3) and
Y((y1,¥2)) = (V1 — y2,y1 + 2y2)). Then

(Y op)((x1,x2,x3)) = V((x1 — x2 + 2x3, —x1 + 3x20 — Xx3)) =
(a—x2+2x3)—(—x1+3x2—X3), (x1—x2+2x3)+2(—x1+3x2—x3)) =
(2x1 — 4x + 3x3, —x1 + 5x2).



Operation on Matrices

Definition

Let A,Be M(m x n;R),a € R, A= [aj],B = [bjj]. The sum of
matrices A and B is matrix A + B = [aj; + bjj]. The product of
matrix A by scalar a is the matrix oA = [aajj].

Example
Let & = 2 and let A, B = M(2 x 3;R) be given by

12 -1 ~1 3 2
A:[o 1 0}’52[ 10 1}'

0 51 2 4 -2
e R P



Matrix Multiplication

Definition
Let Ae M(m x n;R) and let Be M(n x I;R). The matrix
product of A by B is a matrix AB = [¢jj] € M(m x I;R) where

Cij = 21 aisbsj = aj1bij + ajoboj + ... + ajnbpj for i =1,...,m

and j=1,...,1/.

In particular, if R; = [ ail ap ... aip ] € M(1 x n;R) is the
by;

. . by . )

i—th row of matrix A and C; = _ € M(n x 1;R) is the j—th
by

column of matrix B then R;C; = [ ajpbyj + ...+ ainbpj ] is a
1 x 1 matrix which can be identified with a real number.



Matrix Multiplication (continued)

Using this identification we can write

RG RG ... RG

RCG RG ... R(G
AB = . : . .

RmCi RnG ... RnG



Example

Let Ae M(3 x 2;R) and B € M(2 x 2;R) be given by

1 2
A=| 23 |,B= { 1 _; }
-1 1
Then
Rl R1C1 R1C2 3 -3
AB = Rz [ Cl C2 ] = R2C1 R2C2 = 5 —4
R3 R3C1 R3C3 0 -3

In simple terms, the first column of AB is the sum of columns of A
and the second one is the first column of A minus twice the second
column of A.



Warning

The matrix multiplication is, in general, not commutative. For

example
10 01| |01
00 00| |00

oolleel-loo]

but
10 0
00 0



Operation on Linear Transformations and Matrices

Theorem (Addition)

Let VW be vector spaces and let p,v : V — W be linear
transformations. Let A, B be bases of V and W respectively. Then
M(p + )5 = M) + M(¥)5.

Theorem (Composition and multiplication)

Let U, V, W be vectors spaces and let p: U — V, ¢V — W
be linear transformations. Let A, B,C be the bases of U,V and
W, respectively. Then M(vp 0 ) = M(y)GM()5.



Example (continued)

Let ¢ : R3 — R? and 9 : R? — R? be linear transformations
given by ¢((x1,x2,x3)) = (x1 — x2 + 2x3, —x1 + 3x2 — x3) and
¥((y1,¥2)) = (1 — y2, 51 + 2y2)). Recall that

(¢ o (p)((Xl,XQ,X3)) = (2X1 —4xy + 3x3, —x1 + 5X2). We will
compute this again, using matrix multiplication. Let A be the
standard basis in R3 and let B = C be the standard basis in R?.

Then

wooct-mogmai-[ L 2] 2 2]

[ 2 -4 3
-1 5 0]

This agrees with the formula of 9 o .



Applications

Proposition
Let V', W be vector spaces and let ¢ : V. — W be a linear
transformation. Let A = (v1,...,vy,) be an ordered basis of V and
let B = (wi,...,wn) be an ordered basis of W. For any vector
veV let ay,...,a, be the coordinates of v relative to the basis
A and let B1,...,Bm be the coordinates of p(v) relative to the
basis B, that isv = aqvi + ... + a,v, and
o(v) = Piws + ... + BmWm. Then
Qi p1
| |

Qp /Bm



Example

Let 9 : R2 — R? be a linear transformations given by

P((x1,x2)) = (x1 — x2,x1 + 2x2). Let st = ((1,0),(0,1)) be the
standard basis in R? and let

A= ((1,2),(0,1)), B =((1,0),(1,—1)) be other two bases of R2.
We check immediately that

¥(1,2) = (—1,5) = 4(1,0) — 5(1, -1),
¥(0,1) = (-1,2) = 1(1,0) — 2(1,-1).
Therefore

wi-| ] 5| mes-| 4 5|

Pick, say, v = (1,1). Since v = 1(1,2) —1(0, 1), the coordinates of
v relative to A are 1, —1. Since ¢(v) = (0,3) = 3(1,0) — 3(1,-1),
the coordinates of ¥ (v) relative to B are 3, —3.



Example (continued)

s | 1 —1 B _ 4 1
-] T | mes-] 8 )
the coordinates of v = (1,1) relative to the basis A are 1, —1

the coordinates of ¥(v) = (0, 3) relative to the basis B are 3, -3

v | -1 S]] 5
wos| 1]-[ 4 3] ][ 3]



Applications (continued)

Let V be a vector space. The function idy, : V — V given by
idy(v) = v for any v € V is a linear transformation called the

identity.
Corollary
Let A= (v1,...,vy) and B = (w1, ..., wy) be two ordered bases
of V. Foranyve V let ai,...,«a, be the coordinates of v relative
to the basis A and let 31,..., [, be the coordinates of v relative
to the basis B. Then
Qi p1
. a2 B2
MGidWG | | =1 .
Qn Bn

The matrix M(idy)% is called a change-of-coordinates matrix.



Applications (continued)

Proposition

Let V', W be vector spaces and let ¢ : V. — W be a linear
transformation. Let A, A’ be (ordered) bases of V and let B,B' be
(ordered) bases of W. Then

M()5 = M(idw)E M(p)EM(idy)%.

Proof.

This follows directly from the fact that idy, op oidy = ¢ and the
formula relating composition of linear transformations with matrix
multiplication. U



Example (continued)

Let 9 : R?2 — R? be a linear transformation given by the formula
P((x1,x2)) = (x1 — x2,x1 + 2x2). Let st = ((1,0),(0,1)) be the
standard basis of R? and let A = ((1,2),(0,1)),

B = ((1,0),(1,—1)) be other two bases of R2.We have already
checked that

1 -1 4 1
st _ B _
Let check this again using the previous Proposition. It says that

M(9)5 = M(idg2) oM (1) 5 M (idg2) %

We need to compute M(idg2)5 and M(idg2)SE.



Example (continued)

We need to compute M(idg2)5 and M(idg2)%. Recall that
A=((1,2),(0,1)), B=((1,0),(1,—1)). Since

id((1,2)) = 1(1,0) + 2(0,1),
id(0,1) = 0(1,0) + 1(0,1),

we have M(idg2)% = [ ; (1) ] . Since

id((1,0))
id((0,1)) = 1(1,0) — 1(1,-1),

we have M(idg2)5 = [ é _1 ] . Using

M()B = M(idg2)5M ()5 M(idg2)S one can check that

R E I F s P

1(1,0) +0(1, -1),



Elementary Matrices
Fix @« € R, n > 0 and define the following matrices
D; = [du], Eij = [en], Tij = [tw],€ M(n x n;R) as follows
i) di =1 for k # i, dij = o, diy =0 elsewhere,
i) ek =1for k =1,...,n, ej =1, ey =0 elsewhere,
i) tie = 1 for k¢ {i,j}, tj =tj =1, ty =0 elsewhere.

; J
i
10 0 0 0 ‘10000-0
ifo 1010 -~ 0
if0 a 0 00
00 1 0 0 00100 -0
o ; E;=]0 0 0 1 0 -+ 0Of,
Di=|: = & .o 00O0O0OT1 --- 0
o060 --- 10 Do :
000 01 00 00O 1
i J
1 0 00 0 0 0
01 00 0 0 0
il0 0 0 O 010
00 01 0 0 0
7’/]7 P
0 0 0 O 1 0 0
j 10 0 0 00



Elementary Matrices (continued)

Proposition
Let Ae M(n x m;R). Then

i) D;A = matrix A with the i-th row multiplied by «,

ii) EjA = matrix A with the j-th row added to the i-th row,
i) T;jA = matrix A with the i-th and j-th rows switched.

Elementary row operations correspond to multiplication by
elementary matrices from the left.



