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Vector Spaces

A vector space V (or linear space) over the real numbers is a set
V of objects, called vectors, equipped with two operations:

i) addition of two vectors, i.e. to each pair of vectors v , w ∈ V

we associate the sum v + w ∈ V ,

ii) multiplication of vectors by real numbers (scalars), i.e. to each
vector v ∈ V and a real number α ∈ R we associate the
product αv ,

satisfying the following rules:



Vector Spaces (continued)

i) v + w = w + v for any v , w ∈ V (addition is commutative),

ii) u + (v + w) = (u + v) + w for any u, v , w ∈ V (addition is
associative),

iii) there exists 0 ∈ V (the zero vector) such that v + 0 = v for
any v ∈ V ,

iv) for any v ∈ V there exists a vector −v ∈ V such that
v + (−v) = 0,

v) (α + β)v = αv + βv for any α, β ∈ R and v ∈ V

(multiplication is distributive with respect to scalar addition),

vi) α(v + w) = αv + αw for any α ∈ R and v , w ∈ V

(multiplication is distributive with respect to vector addition),

vii) α(βv) = (αβ)v for any α, β ∈ R and v ∈ V (scalar
multiplication is compatible with multiplication of real
numbers),

viii) 1v = v for any v ∈ V .



Few Facts

The following facts are direct consequences of these rules:

i) The element 0 ∈ V is unique. Suppose there is another
0′ ∈ V , then 0 = 0 + 0′ = 0′.

ii) The element −v ∈ V is unique. Suppose there are v ′, v ′′ ∈ V

such that v + v ′ = v + v ′′ = 0. Then
(v + v ′) + v ′ = (v + v ′′) + v ′ but this implies v ′ = v ′′.

iii) 0v = 0. Consider 0v = (0 + 0)v = 0v + 0v . Hence
0 = (0v + 0v) + (−0v), that is 0 = 0v .

iv) (−1)v = −v . Consider 0 = (1 − 1)v = v + (−1)v . But −v is
unique, hence (−1)v = −v .

You may try to prove in a similar fashion that α0 = 0 or that
αv = 0 implies α = 0 or v = 0.



Examples

i) the zero vector space {0},

ii) the n-tuple space R
n, with addition

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn),
multiplication α(x1, . . . , xn) = (αx1, . . . , αxn) and the zero
vector 0 = (0, . . . , 0), in particular R =line, R2 =plane,
R

3 =three-dimensional space,

iii) the space R
∞ of infinite sequences of real numbers, with

addition (xi) + (yi) = (xi + yi), multiplication α(xi ) = (αxi )
and the zero vector 0 = (0, 0, . . .),

iv) the space of real functions on any set X

F(X ,R) = {f : X −→ R} with addition and multiplication
defined pointwise: (f + g)(x) = f (x) + g(x) and
(αf )(x) = αf (x). The zero vector is the constant function
admitting 0 everywhere on X .



Subspaces

Let V be a vector space. A subspace W of V is a non-empty
subset W ⊂ V satisfying two conditions:

i) v + w ∈ W for any v , w ∈ W (subspace is closed under
addition),

ii) αv ∈ W for any α ∈ R and v ∈ W (subspace is closed under
scalar multiplication).

A subspace W of V is called proper if W 6= V . Any subspace is a
vector space.



Examples

The set of solutions of any homogeneous system of linear
equations in n unknowns is a subspace of Rn























a11x1 + a12x2 + . . . + a1nxn = 0
a21x1 + a22x2 + . . . + a2nxn = 0

...
...

. . .
...

...
am1x1 + am2x2 + . . . + amnxn = 0

It can be shown that any subspace of Rn is of that form. Every
subspace contains 0. Note that the set of solutions of a
non-homogeneous system of linear equations is not a subspace
since it does not contain 0.



Examples (continued)

R
∞

c = {sequences (xi) such that xi = 0 for all but finitely many i}
is a subspace of R∞.

Let x0 ∈ X . Then {f ∈ F(X ,R) | f (x0) = 0} is a subspace of
F(X ,R).

All proper subspaces of R2 are lines through the origin (0, 0) and
the zero subspace {(0, 0)}. Similarly, all proper subspaces of R3

are planes and lines through the origin (0, 0, 0) and the zero
subspace {(0, 0, 0)}.

If U, V ⊂ W are subspaces of vector space W , then U ∩ V is a
subspace of W . You may try to prove that U ∪ V is a subspace of
W if and only if U ⊂ V or V ⊂ U.



Linear Combinations

Let V be a vector space. The linear combination of vectors
v1, . . . , vk ∈ V with coefficients α1, . . . , αk ∈ R is the vector
α1v1 + . . . + αkvk =

∑

k

i=1 αivi ∈ V . The set of all linear
combinations of vectors v1, . . . , vk will be denoted by
lin(v1, . . . , vk).

lin(v1, . . . , vk) = {α1v1 + . . . + αkvk | α1, . . . , αk ∈ R}.

For example, the linear combination of vectors
v1 = (1, 0, 1), v2 = (0, 1, 0), v3 = (1, −1, 0) in R

3 with coefficients
3, 2, 1 is the vector (4, 1, 3) = 3(1, 0, 1) + 2(0, 1, 0) + (1, −1, 0).



Linear Span

Let V be a vector space.

Proposition

If vectors v , w ∈ V are linear combinations of vectors

v1, . . . , vk ∈ V then so is v + w.

Proof.
Let v = α1v1 + . . . αkvk and w = β1v1 + . . . βkvk . Then
v + w = (α1 + β1)v1 + . . . (αk + βk)vk .

Corollary

The set lin(v1, . . . , vk) is a subspace of V .

If W = lin(v1, . . . , vk) then we call W the linear span of the
vectors v1, . . . , vk . We say W is spanned by the vectors v1, . . . , vk .

Corollary

If w1, . . . , wl ∈ lin(v1, . . . , vk) then

lin(w1, . . . , wl ) ⊂ lin(v1, . . . , vk).



Linear Span (continued)

Let V be a vector space.

Proposition

For any v1, . . . , vk ∈ V and α ∈ R − {0} the following hold:

i) lin(v1, v2, . . . , vk) = lin(αv1, v2, . . . , vk)

ii) lin(v1, v2, . . . , vk) = lin(v1 + v2, v2, . . . , vk)

Corollary

We have

lin(v1, . . . , vk) = lin(v1 + αv2, v2, . . . , vk),

that is, elementary operations on vectors does not change the

spanned subspace.


