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Endomorphism

Definition

Let V' be a vector space and A its (ordered) basis. A linear
transformation ¢ : V — V is called a linear endomorphism.
The matrix M() is called matrix of endomorphism relative to
basis A. It is denoted in short M(p) 4.

Example
The identity id : V — V is a linear endomorphism and its matrix
relative to any basis A is the identity matrix

1 0
M(id) 4 = € M(n x nm;R),

where n = dim V.



Example

Let

r:R? — R?
k:R? — R?
p:R? — R?.
be linear endomorphisms of R? defined as follows: s is a reflection
of R? about the x;-axis, r rotation about the origin of R? (i.e.
(0,0)) by 5 radians (i.e. 90 degrees) counter-clockwise, k is scaling

by —2 in all directions (also called uniform scaling) and p is
projection onto the x»-axis.



Example (continued)
For example, if v = (2,1) then

s(v) = (2,-1), r(v) = (=1,2), k(v) = (-4, -2}, p(v) =

s(x1,x0) = (x1, —x2)

31 r(x1, x2) = (—x2,x1)
2, _ ) n
k(Xl,Xg) = (—2x1, —2x7)
1 L p(XhXQ) _

X1




Example (continued)

s(xi,Xx2) = (x1, —X2), r(xi,x2) = (—x2,x1),
k(x1,x2) = (—2x1, —2x2), p(x1,x2) = (0,x2).

The matrices of these endomorphisms relative to the standard basis
st = ((1,0),(0,1)) look as follows:

=] g O | moa=] 7 .

e~ | o % | mea| o 7.

Take different basis, for example A = ((1,2)(1,1
change-of-coordinate matrix is

~—

~—
—
-0
@

M(id)A = (M(id)%) ™t = { ; i ]_1 - [ _é —1 ]



Example (continued)
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Example (continued)

We see that matrices of simple linear transformations look ‘nice’
relative to some bases and ‘not-that-nice’ relative to the others.
That aim of this lecture if to find a way of computing those ‘nice’
ones in the general case. Note that determinants and the ranks of
corresponding matrices did not change.



Matrix Similarity

Definition
Two matrices A, B € M(n x n;R) are called similar if there exists
an invertible matrix C € M(n x n;R) such that

A= ClBC.

Proposition

Let ¢ : V —> V be a linear endomorphism of a finite dimensional
vector space V. For any two bases A, B of V' the matrices M () 4
and M(p)p are similar.

Proof.

M(p)E = M(id o p o id)§ = M(id)3M(p)AM(id)5

Therefore
M(p)s = C " M(p) 4C,

where C = M(id)#. O



Example
Let o((x1,x2)) = (x1 + x2,2x1 + 3x2) be a linear endomorphism

¢ :R? — R2. Take A = st and B = ((—2,1),(1,—1). Then

M= | 5 5 | mdc=miad=| 2]

Use M(¢)g = C"1M(p)4C and compute C~1 = { :i :; ]
Then

1 —17[1 1] -2 1 2 1
M(SO)B:[—l —2”2 3” 1—1}:[3 2}'
On the other hand,

p((=2,1)) = (=1,-1) = 2(=2,1) +3(1, -1),

©((1,-1)) = (0,-1) = (—2,1) + 2(1,-1).



Similar Matrices and Endomorphisms

Theorem

Let V be n-dimensional vector space and let A, B € M(n x n;R).
Then

A, B are similar <= there exists an endomorphism ¢ : V — V
and bases A, B of V such that M() 4 = A and M(p)p = B.

Proof.

(<) was done before.

(=) there exits an invertible matrix C € M(n x n;R) such that

B = C7'AC. Let A be any basis of the vector space V and let ¢
be the unique linear endomorphism given by the condition

M(p)% = A. If B is given by the condition C = M(id)% then

B = M(p)s- O



Eigenvalues and Eigenvectors

Definition

Let ¢ : V — V be a linear endomorphism of a finite dimensional
vector space V. A constant \ € R is called eigenvalue of ¢ if
there exists a non-zero vector v € V such that

Such vector v is called an eigenvector of ¢ associated to the
eigenvalue \.

Remark (geometric interpretation)

A vector v € V is an eigenvector of o if and only if

¢(lin(v)) < lin(v) and lin(v) # {0}, i.e. v is a non-zero vector and
the line spanned by v is mapped into itself.



Eigenvalues and Eigenvectors (continued)

Let ¢ : V — V be a linear endomorphism. For any eigenvalue A
of  let V(,) denote the set of all eigenvectors associated to A
together with the zero vector, i.e.

Viy =1{veV]p(v) =Av.}

Proposition
The subset V() = V is a subspace of V.

Proof.

Let v,w € V(y). Then

o(v+w)=p(v)+pw) =Av+ Aw = A(v + w). Hence

v+ we V(y. Forany a € R we have p(av) = ap(v) = A(av).
Hence av € V(y). O
For any eigenvalue A of ¢ the subspace V() is called the
eigenspace associated to A. It is straightforward that

o(Viny) = V(-



Example

Let s : R2 —> R2 be a reflection of R? about the xq-axis. Then
V1) = lin((1,0)) and V(_;) = lin((0,1)). The rotation r about the
origin of R? by 7 radians counter-clockwise has no eigenvalues (no
line is mapped into itself). In the case of uniform scaling k by —2
in all directions any non-zero vector is eigenvector associated to
—2,ie Vi p = R2.The projection p onto the x»-axis has two
eigenspaces: Vg) = lin((1,0)) and V/q) = lin((0,1)).

Note that for s, k and p there exist a basis (the standard one)
consisting of eigenvectors. The matrices of those endomorphisms in
the standard basis are diagonal.

O I R CR

M(p)st=[8 (1)]



Characteristic Polynomial
Definition
Let Ae M(n x n;R). The polynomial wa(\) = det(A — Al,) is
called the characteristic polynomial of A.

The degree of wa()\) is equal to n.
Example

4 2
LetAz{3 3

wa(\) =det{ 4? 3EA ] — (4—N)B-N)—6= A —TA+6.

]. Then

Proposition
Let A, B e M(n x n;R) be similar matrices. Then wa = wg.

Proof.

There exists an invertible matrix C such that A= C~'BC. But
wa(A) = det(A — M) = det(C1BC — C1\I,C) =

det(C7 (B — \I,)C) = (det C)~1det(B — Al,)det C = wg(\). [



Characteristic Polynomial (continued)

Definition

Let ¢ : V — V be a linear endomorphism of a finite dimensional
vector space V. The characteristic polynomial w, of ¢ is the
characteristic polynomial of matrix M(y) 4 where A is a basis of V.

By the previous proposition the characteristic polynomial of ¢ does
not depend on the basis A.



Finding Eigenvalues and Eigenvectors

Theorem

Let ¢ : V — V be a linear endomorphism of a finite dimensional
vector space V.

i) e R is an eigenvalue of ¢ <= « is a root the characteristic
polynomial of ¢,
i) let A= (vi,...,vn) and A= M(p)a. The vector

vV =x1v1 + ...+ XaVp is an eigenvector of @ associated to « if
and only if

X1 0
(A—alp)

Xp 0



Finding Eigenvalues and Eigenvectors (continued)

Proof.
Let v =x3vi + ...+ Xpvp. Then ¢(v) = av if and only if
X1 X1 X1 0
Al : =af — (A—al,) : =
Xn Xn Xn 0

From the previous lecture we know that there exists a non-zero
solution of the latter if and only if det(A — al,) =0, i.e.
wa(a) = 0.



Example
Let ¢ : R® — R3 be an endomorphism of R? given by
o(x1,x2,x3) = (4x1 + 4xp, —x1, X1 + 3x2 + 3x3). Its matrix in the

4 4 0
standard basisis A= M(¢)se = | —1 0 0 |.
1 33

4-)\ 4 0
A\ = 1 - 0
1 3 3-2)\

Hence wy,(\) =det(A—Al) = (3—=X)((4=N)(=)) +4)) =
(3—=AN) (N2 —4X+4) = (3—))(2— N2 There are two eigenvalues
A1 =2 and Ay = 3. To find V() we solve a system of linear

equations:
2 4 0 X1 0
V(2) . -1 -2 0 X2 = 0
1 31 X3 0



Example (continued)

2 4 0 rn+2m 1 20 1 0

1 —2 0| ™% o1 1|20 1

1 3 1 0 0 O 0 0
Therefore x; = 2x3, x» = —x3, x3 € R, i.e.

V(2) = {(2X3, —X3,X3) | X3 € R} = Im((2, —1, 1))

1 4 0 X1 0
V(3) -1 -3 0 X2 = 0
1 30 X3 0

=



Example (continued)

W w s

1 0 r+r
1 — 0 I’3+I’2 _
1 0

Therefore x; = xo = 0, x3 € R, i.e.

o = O

1
-3
0

o O O

1
rzﬁi’l 0
0

V(3) = {(0,0,X3) | X3 € ]R} = Iin((0,0, 1))

o = O

o O O

} |



Example (continued)

Recall that
p(x1,x2,x3) = (4x1 + dxa, —x1, x1 + 3x2 + 3x3),

V(2) = Iin((2, —1, 1)),
V(3) = Im((0,0, 1)),

and check those directly

0(2,-1,1) = (4,-2,2) = 2(2,—1,1),

©(0,0,1) = (0,0,3) = 3(0,0,1).



Remarks

i) if o : V— V and dim V is odd then the degree of w,, is odd
therefore it has at least one real root so there exists an
eigenvector of ¢,

i) dim V(,) < multiplicity of the root av in wy, cf. the last
example (2 is a root of multiplicity 2 but dim V) = 1),
0 ... 0
iii) if Ae M(n x n;R) then wa(A) = | : .. [, i.e. matrix
0 ... 0

A substituted to its characteristic polynomial gives the zero
matrix (Cayley-Hamilton theorem).



Example



