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What is Linear Programming?

Example

Maximize the value x
1

` 2x
2

under the onstraints
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What is Linear Programming?
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What is Linear Programming?
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no optimal solution



Eonomy and Eonomial

The seond meaning of `eonomy' in the Oxford British and

World English Ditionary

Careful management of available resoures.

The �rst meaning of `eonomial' in the Oxford British and

World English Ditionary

Giving good value or return in relation to the money, time, or e�ort

expended.

from Greek

oikonomia=household management, housekeeping



Linear Programming Problem

De�nition

Linear programming problem is a task of maximizing or

minimizing a linear funtion (alled an objetive funtion) over a

set X Ă R
n
desribed by a �nite number of linear equalities and

inequalities.

That is, we look for a maximal or minimal value of the funtion

f ppx
1

, x
2

, . . . , xnqq “ c
1

x
1

` c
2

x ` . . . ` cnxn on the set X Ă R
n
of

points satisfying the following onditions
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k2x2 ` . . . ` a1
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k

i.e. k inequalities.

Those onditions (also alled onstraints) an be written in

onise form. Set
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The linear programming problem an be written in the form:

maximize (or minimize) the funtion f pxq “ c⊺x over the set

X Ă R
n
given by

Ax “ b, A1x ď b1

Equivalently, one an write f pxq ÝÑ maxpresp. minq or

maxtf pxq | x P X u (resp. mintf pxq | x P X u ).

An inequality of type a
1

x
1

` . . . ` anxn ě b is equivalent to the

inequality ´a
1

x
1

´ . . . ´ anxn ď ´b.



Real Life Appliations - Transportation Problem

A �rm produes some goods at l supply enters and ships those

goods to k markets. The ost of transporting a unit of those goods

from the i -th supply enter to the j-th market is aij . Eah market

demands at least of bj units of those goods. Eah supply enter

produes at most wi units of goods.

Introdue l ˆ k variables xij for i “ 1, . . . , l and j “ 1, . . . , k

denoting the amount of the transport from the i -th supply enter

to the j-th market. We want to minimize the ost of transport and

to satisfy demands of all markets. We minimize the linear funtion

řl
i“1

řk
j“1

kijxij under the onstraints
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i.e. no supply enter annot supply more than wi of goods and



Real Life Appliations - Transportation Problem
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x
1k ` x

2k ` x
3k ` . . . ` xlk ě bk

i.e. the demand of eah market is satis�ed. We want to transport

from a supply enter to a market so we assume

xij ě 0 for i “ 1, . . . , l and j “ 1, . . . , k .



Real Life Appliation - Diet Problem

Suppose there are n foods available. The ost of serving per j-th

food is qj . Assume there are k nutrients and eah serving of j-th

type of food ontains zij units of the i -th nutrient. We want to �nd

a healthy diet minimizing its ost. Let Ni denotes the minimal

amount of units of the i -th nutrient in a healthy diet. Introdue n

variables x
1

, . . . , xn, where xj stands for the amount of servings of

the j-th food. We minimize the funtion q
1

x
1

` q
2

x
2

` . . . ` qnxn
under the onstraints
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Real Life Appliations - Diet Problem

If needed one may add another onstraints for the minimal or

maximal amount of servings of eah type of food. A similar problem

was onsidered in 1930s and 1940s in order to �nd an optimal diet

for the US soldiers.



Real Life Appliations

And many more: portfolio optimization, network design, vehile

routing.



Convex Polytopes

De�nition

For any x , y P R
n
the segment joining x and y is the set

ttx ` p1 ´ tqy | t P r0, 1su. A set X Ă R
n
is said to be onvex if

for any x , y P X the segment joining x and y is ontained in X .

Proposition

Intersetion of a �nite number of onvex sets is a onvex set.

De�nition

A half-spae is a subset of R
n
given by the inequality

a
1

x
1

` . . . ` anxn ď b. A polytope is a subset of R
n
equal to a

intersetion of a �nite number of half-spaes.

A half-spae is a onvex set. Therefore a polytope is a onvex set.



Convex Polytopes

Suppose we are given a linear programming problem with

onstraints Ax “ b, A1x ď b1
with f pxq “ c⊺x ÝÑ min.

De�nition

A feasible region (also a feasible set) is the set of all points

X Ă R
n
satisfying the onditions Ax “ b, A1x ď b1

. An optimal

solution is any point x P X suh that f pxq ď f pxq for any x P X .

A feasible region is a onvex polytope. If it is bounded (i.e.

ontained in a ball) then there exists an optimal solution. An

optimal solution may be not unique.



Supporting Hyperplane

De�nition

Let X Ă R
n
be a onvex set. A supporting hyperplane of X is a

hyperplane H given by the equation a
1

x
1

` . . . ` anxn “ b suh

that H X X ‰ H and X Ă H` or X Ă H´ where

H` “ tpx
1

, . . . , xnq P R
n | a

1

x
1

` . . . ` anxn ě bu

H´ “ tpx
1

, . . . , xnq P R
n | a

1

x
1

` . . . ` anxn ď bu

De�nition

A fae of a polytope X is the intersetion of X with its supporting

hyperplane. A fae of X whih is a point is alled a vertex of X .

A fae of a polytope is a polytope. Equivalently, a vertex of X an

be de�ned as a point of X whih for any x , y P X is not an interior

point of the segment joining x and y (i.e. point of the segment

di�erent from x and y) - so alled extremal point.



Example
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bounded ñ optimal solution existsvertices, i.e.
0´dimensional faces
1´dimensional facesoptimal solution is a vertex

x
1

` 2x
2

“ 7

x “ p3, 2q

maximize x
1

` 2x
2

optimal solution may not be unique

2x
1

` x
2

“ 8

maximize 2x
1

` x
2



Optimal Solution

Theorem

An optimal solution of a linear programming problem, if it exists,

belongs to a fae of the feasible region.

That is, if an optimal solution exists it an be hosen to be a vertex

of the feasible region.

De�nition

A linear programming problem in R
n
is in the standard form if the

only onstraints are of the type

Ax “ b, x ě 0,

and we look for the minimum of the objetive funtion f pxq “ c⊺x .



Standard Form

Theorem

Any linear programming problem an be brought to a standard

form.

The following operations on the a linear programming data give an

equivalent problem:

i) the ondition f pxq ÝÑ max an be replaed by

´f pxq ÝÑ min,

ii) the inequality a
1

x
1

` . . . ` anxn ď b an replaed by

a
1

x
1

` . . . ` anxn ` xn`1

“ b and xn`1

ě 0, the inequality

a
1

x
1

` . . . ` anxn ě b an replaed by

a
1

x
1

` . . . ` anxn ´ xn`1

“ b and xn`1

ě 0, the newly

introdued variable xn`1

is alled slak variable,

iii) the ondition xi ď 0 an be replaed by x 1
i ě 0 and x 1

i “ ´xi ,

iv) if there are no onstraints on the variable xi , one an introdue

two slak variables x´
i , x`

i ě 0 and set xi “ x`
i ´ x´

i .



Example

Bring to a standard form the following linear programming problem:

x
1

` 2x
2

ÝÑ max
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Example (ontinued)

Equivalently, it an be written c⊺x ÝÑ min, Ax “ b, x ě 0 where

A “

„

2 1 1 0

´1 3 0 1



, b “

„

8

3



, x “

»

—

—

–

x
1

x
2

x
3

x
4

fi

ffi

ffi

fl

, c “

»

—

—

–

´1

´2

0

0

fi

ffi

ffi

fl

The optimal solution is

x “

»
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—

–

3
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0

0

fi

ffi

ffi

fl

and c⊺x “ ´7



Basi Set, Basi Variables

From now on we deal only with a linear programming problem in

the standard form c⊺x ÝÑ min,Ax “ b, x ě 0 where

A “

»

—

–

a
11

¨ ¨ ¨ a
1n

.

.

.

.

.

.

.

.

.

am1

¨ ¨ ¨ amn

fi

ffi

fl
, b “

»

—

–

b
1

.

.

.

bm

fi

ffi

fl

We an assume that rpAq “ rprA|bsq “ m (i.e. the system Ax “ b

has solutions and no equation is redundant).

De�nition

A basi set B “ ti
1

, . . . , imu Ă t1, . . . , nu is a set of m elements

suh that olumns ki
1

, . . . , kim of the matrix A are linearly

independent. The variables xi
1

, . . . , xim are alled basi variables.

The other variables are alled non-basi.



Example

Consider a linear programming problem

c⊺x ÝÑ min, Ax “ b, x ě 0 where

A “

„

2 1 1 0

´1 3 0 1



, b “

„

8

3



There are

`

4

2

˘

“ 6 basi sets, i.e. every set of 2 elements is basi.



Example

Consider a linear programming problem

c⊺x ÝÑ min, Ax “ b, x ě 0 where

A “

„

2 ´6 1 0

´1 3 0 1



, b “

„

8

3



There are 5 basi sets

B
1

“ t1, 3u,B
2

“ t1, 4u,B
3

“ t2, 3u,B
4

“ t2, 4u,B
5

“ t3, 4u.



Basi Solution and Basi Feasible Solution

De�nition

Let B be a basi set. The unique solution xB P R
n
of the system of

linear equations Ax “ b with xi “ 0 for i R B is alled a basi

solution. The basi set B suh that xB ě 0 is alled a feasible

basi set and the solution xB is alled a feasible basi solution.

Otherwise the basi set B and the basi solution xB are alled

infeasible.

Theorem

Basi feasible solutions orrespond to verties of the polytope X

given by the onditions Ax “ b, x ě 0.

Proof.

The equation

ř

jPt1,...,nu´B
xj “ 0 de�nes a supporting hyperplane

whih intersets with the feasible region in exatly one point, that

is in a vertex.



Example

Consider a linear programming problem

c⊺x ÝÑ min, Ax “ b, x ě 0 where

A “

„

2 1 1 0

´1 3 0 1



, b “

„

8

3



The set B “ t3, 4u is basi. The orresponding basi solution

xB “
“

0 0 8 3

‰⊺
is feasible sine xB ě 0. It orresponds to

the vertex p0, 0q of a polytope given by the original problem.

The set B “ t2, 4u is basi. The orresponding basi solution

xB “
“

0 8 0 ´21

‰⊺
is infeasible sine xB ğ 0. The basi set

B “ t2, 4u is infeasible.



Basi Feasible Solution

Let B “ txi
1

, . . . , ximu be a basi set. Let

xB “
“

xi
1

xi
2

¨ ¨ ¨ xim
‰⊺

and let

xD “
“

xj
1

xj
2

¨ ¨ ¨ xjn´m

‰

⊺
, where

tj
1

, j
2

, . . . , jn´mu “ t1, 2, . . . , nu ´ B and j
1

ă j
2

ă . . . ă jn´m.

Moreover, let AB be a submatrix of A onsisting of olumns

i
1

, . . . , im and let AD be submatrix of A onsisting of olumns

j
1

, . . . , jn´m. Then

Ax “ b ðñ ABxB ` ADxD “ b ðñ xB ` A´1

B
ADxD “ A´1

B
b.

Therefore, the basi solution is given by xD “
“

0 . . . 0

‰

⊺
and

xB “ A´1

B
b. This means a basi solution an be omputed by

performing elementary row operations on the matrix rA|bs until the

olumns i
1

, . . . , im will be equal to

»

—

—

—

–

1

0

.

.

.

0

fi

ffi

ffi

ffi

fl

,

»

—

—

—

–

0

1

.

.

.

0

fi

ffi

ffi

ffi

fl

, . . . ,

»

—

—

—

–

0

0

.

.

.

1

fi

ffi

ffi

ffi

fl

,

respetively.



Example

Consider a linear programming problem

c⊺x ÝÑ min, Ax “ b, x ě 0 where

A “

„

2 1 1 0

´1 3 0 1



, b “

„

8

3



The set B “ t2, 4u is basi. We ompute the basi solution by

using elementary row operations on rA|bs to get the 2´nd olumn

equal to

„

1

0



and the 4´th olumn equal to

„

0

1



.

„

2 1 1 0 8

´1 3 0 1 3



r
2

´3r
1ÝÑ

„

2 1 1 0 8

´7 0 ´3 1 ´21



Therefore if x
1

“ x
3

“ 0 (non-basi variables) then

x
2

“ 8, x
4

“ ´21 (basi variables). Sine x
4

ă 0 the basi solution

xB “
“

0 8 0 ´21

‰⊺
is infeasible.



Next Leture - Simplex Method

We will learn an algorithm, alled simplex method, for �nding an

optimal solution. Simplex method starts from a basi feasible set

and with eah turn moves to another basi feasible solution

dereasing the objetive funtion.


