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What is Linear Programming?

Example

Maximize the value x
1

` 2x
2

under the 
onstraints
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ď 3



What is Linear Programming?
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optimal solution is p3, 2q
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What is Linear Programming?
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maximize x
1

` 2x
2

#

x
1

ě 0

x
2

ě 0

´x
1

` x
2
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x
1

` 2x
2

“ ´2

x
1

` 2x
2

“ 1

x
1

` 2x
2

“ 4

x
1

` 2x
2

“ 7

no optimal solution



E
onomy and E
onomi
al

The se
ond meaning of `e
onomy' in the Oxford British and

World English Di
tionary

Careful management of available resour
es.

The �rst meaning of `e
onomi
al' in the Oxford British and

World English Di
tionary

Giving good value or return in relation to the money, time, or e�ort

expended.

from Greek

oikonomia=household management, housekeeping



Linear Programming Problem

De�nition

Linear programming problem is a task of maximizing or

minimizing a linear fun
tion (
alled an obje
tive fun
tion) over a

set X Ă R
n
des
ribed by a �nite number of linear equalities and

inequalities.

That is, we look for a maximal or minimal value of the fun
tion

f ppx
1

, x
2

, . . . , xnqq “ c
1

x
1

` c
2

x ` . . . ` cnxn on the set X Ă R
n
of

points satisfying the following 
onditions
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a
11

x
1

` a
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x
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` . . . ` a
1nxn “ b

1

a
21

x
1

` a
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x
2

` . . . ` a
2nxn “ b

2
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am1

x
1

` am2

x
2

` . . . ` amnxn “ bm

i.e. m equalities and
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a1
11

x
1

` a1
12

x
2

` . . . ` a1
1nxn ď b1

1

a1
21

x
1

` a1
22

x
2

` . . . ` a1
2nxn ď b1

2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

a1
k1x1 ` a1

k2x2 ` . . . ` a1
knxn ď b1

k

i.e. k inequalities.

Those 
onditions (also 
alled 
onstraints) 
an be written in


on
ise form. Set

A “

»

—

–

a
11

¨ ¨ ¨ a
1n

.

.

.

.

.

.

.

.

.

am1

¨ ¨ ¨ amn

fi

ffi

fl
, A1 “

»

—

–

a1
11

¨ ¨ ¨ a1
1n

.

.

.

.

.

.

.

.

.

a1
k1 ¨ ¨ ¨ a1

kn

fi

ffi

fl

x “

»

—

–

x
1

.

.

.

xn

fi

ffi

fl
, c “

»

—

–

c
1

.

.

.

cn

fi

ffi

fl
, b “

»

—

–

b
1

.

.

.

bm

fi

ffi

fl
, b1 “

»

—

–

b1
1

.

.

.

b1
k

fi

ffi

fl



The linear programming problem 
an be written in the form:

maximize (or minimize) the fun
tion f pxq “ c⊺x over the set

X Ă R
n
given by

Ax “ b, A1x ď b1

Equivalently, one 
an write f pxq ÝÑ maxpresp. minq or

maxtf pxq | x P X u (resp. mintf pxq | x P X u ).

An inequality of type a
1

x
1

` . . . ` anxn ě b is equivalent to the

inequality ´a
1

x
1

´ . . . ´ anxn ď ´b.



Real Life Appli
ations - Transportation Problem

A �rm produ
es some goods at l supply 
enters and ships those

goods to k markets. The 
ost of transporting a unit of those goods

from the i -th supply 
enter to the j-th market is aij . Ea
h market

demands at least of bj units of those goods. Ea
h supply 
enter

produ
es at most wi units of goods.

Introdu
e l ˆ k variables xij for i “ 1, . . . , l and j “ 1, . . . , k

denoting the amount of the transport from the i -th supply 
enter

to the j-th market. We want to minimize the 
ost of transport and

to satisfy demands of all markets. We minimize the linear fun
tion

řl
i“1

řk
j“1

kijxij under the 
onstraints
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x
11

` x
12

` x
13

` . . . ` x
1k ď w

1

x
21

` x
22

` x
23

` . . . ` x
2k ď w

2

.

.

.

xl1 ` xl2 ` xl3 ` . . . ` xlk ď wl

i.e. no supply 
enter 
annot supply more than wi of goods and



Real Life Appli
ations - Transportation Problem

$

’

’

’

&

’

’

’

%

x
11

` x
21

` x
31

` . . . ` xl1 ě b
1

x
12

` x
22

` x
32

` . . . ` xl2 ě b
2

.

.

.

x
1k ` x

2k ` x
3k ` . . . ` xlk ě bk

i.e. the demand of ea
h market is satis�ed. We want to transport

from a supply 
enter to a market so we assume

xij ě 0 for i “ 1, . . . , l and j “ 1, . . . , k .



Real Life Appli
ation - Diet Problem

Suppose there are n foods available. The 
ost of serving per j-th

food is qj . Assume there are k nutrients and ea
h serving of j-th

type of food 
ontains zij units of the i -th nutrient. We want to �nd

a healthy diet minimizing its 
ost. Let Ni denotes the minimal

amount of units of the i -th nutrient in a healthy diet. Introdu
e n

variables x
1

, . . . , xn, where xj stands for the amount of servings of

the j-th food. We minimize the fun
tion q
1

x
1

` q
2

x
2

` . . . ` qnxn
under the 
onstraints
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’
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%

z
11

x
1

` z
12

x
2

` z
13

x
3

` . . . ` x
1nxn ě N

1

z
21

x
1

` z
22

x
2

` z
23

x
3

` . . . ` x
2nxn ě N

2

.

.

.

zk1x1 ` zk2x2 ` zk3x3 ` . . . ` xknxn ě Nk



Real Life Appli
ations - Diet Problem

If needed one may add another 
onstraints for the minimal or

maximal amount of servings of ea
h type of food. A similar problem

was 
onsidered in 1930s and 1940s in order to �nd an optimal diet

for the US soldiers.



Real Life Appli
ations

And many more: portfolio optimization, network design, vehi
le

routing.



Convex Polytopes

De�nition

For any x , y P R
n
the segment joining x and y is the set

ttx ` p1 ´ tqy | t P r0, 1su. A set X Ă R
n
is said to be 
onvex if

for any x , y P X the segment joining x and y is 
ontained in X .

Proposition

Interse
tion of a �nite number of 
onvex sets is a 
onvex set.

De�nition

A half-spa
e is a subset of R
n
given by the inequality

a
1

x
1

` . . . ` anxn ď b. A polytope is a subset of R
n
equal to a

interse
tion of a �nite number of half-spa
es.

A half-spa
e is a 
onvex set. Therefore a polytope is a 
onvex set.



Convex Polytopes

Suppose we are given a linear programming problem with


onstraints Ax “ b, A1x ď b1
with f pxq “ c⊺x ÝÑ min.

De�nition

A feasible region (also a feasible set) is the set of all points

X Ă R
n
satisfying the 
onditions Ax “ b, A1x ď b1

. An optimal

solution is any point x P X su
h that f pxq ď f pxq for any x P X .

A feasible region is a 
onvex polytope. If it is bounded (i.e.


ontained in a ball) then there exists an optimal solution. An

optimal solution may be not unique.



Supporting Hyperplane

De�nition

Let X Ă R
n
be a 
onvex set. A supporting hyperplane of X is a

hyperplane H given by the equation a
1

x
1

` . . . ` anxn “ b su
h

that H X X ‰ H and X Ă H` or X Ă H´ where

H` “ tpx
1

, . . . , xnq P R
n | a

1

x
1

` . . . ` anxn ě bu

H´ “ tpx
1

, . . . , xnq P R
n | a

1

x
1

` . . . ` anxn ď bu

De�nition

A fa
e of a polytope X is the interse
tion of X with its supporting

hyperplane. A fa
e of X whi
h is a point is 
alled a vertex of X .

A fa
e of a polytope is a polytope. Equivalently, a vertex of X 
an

be de�ned as a point of X whi
h for any x , y P X is not an interior

point of the segment joining x and y (i.e. point of the segment

di�erent from x and y) - so 
alled extremal point.



Example

1 2 3 4´1

´1

1

2

3

4

x
1

x
2

p3, 2q
$

&

%

x
1

ě 0

x
2

ě 0

2x
1

` x
2

ď 8

´x
1

` 3x
2

ď 3

bounded ñ optimal solution existsvertices, i.e.
0´dimensional faces
1´dimensional facesoptimal solution is a vertex

x
1

` 2x
2

“ 7

x “ p3, 2q

maximize x
1

` 2x
2

optimal solution may not be unique

2x
1

` x
2

“ 8

maximize 2x
1

` x
2



Optimal Solution

Theorem

An optimal solution of a linear programming problem, if it exists,

belongs to a fa
e of the feasible region.

That is, if an optimal solution exists it 
an be 
hosen to be a vertex

of the feasible region.

De�nition

A linear programming problem in R
n
is in the standard form if the

only 
onstraints are of the type

Ax “ b, x ě 0,

and we look for the minimum of the obje
tive fun
tion f pxq “ c⊺x .



Standard Form

Theorem

Any linear programming problem 
an be brought to a standard

form.

The following operations on the a linear programming data give an

equivalent problem:

i) the 
ondition f pxq ÝÑ max 
an be repla
ed by

´f pxq ÝÑ min,

ii) the inequality a
1

x
1

` . . . ` anxn ď b 
an repla
ed by

a
1

x
1

` . . . ` anxn ` xn`1

“ b and xn`1

ě 0, the inequality

a
1

x
1

` . . . ` anxn ě b 
an repla
ed by

a
1

x
1

` . . . ` anxn ´ xn`1

“ b and xn`1

ě 0, the newly

introdu
ed variable xn`1

is 
alled sla
k variable,

iii) the 
ondition xi ď 0 
an be repla
ed by x 1
i ě 0 and x 1

i “ ´xi ,

iv) if there are no 
onstraints on the variable xi , one 
an introdu
e

two sla
k variables x´
i , x`

i ě 0 and set xi “ x`
i ´ x´

i .



Example

Bring to a standard form the following linear programming problem:

x
1

` 2x
2

ÝÑ max

$

’

’

&

’

’

%

x
1

ě 0

x
2

ě 0

2x
1

` x
2

ď 8

´x
1

` 3x
2

ď 3

A standard form: ´x
1

´ 2x
2

ÝÑ min

"

2x
1

` x
2

` x
3

“ 8

´x
1

` 3x
2

` x
4

“ 3

and x
1

, x
2

, x
3

, x
4

ě 0.



Example (
ontinued)

Equivalently, it 
an be written c⊺x ÝÑ min, Ax “ b, x ě 0 where

A “

„

2 1 1 0

´1 3 0 1



, b “

„

8

3



, x “

»

—

—

–

x
1

x
2

x
3

x
4

fi

ffi

ffi

fl

, c “

»

—

—

–

´1

´2

0

0

fi

ffi

ffi

fl

The optimal solution is

x “

»

—

—

–

3

2

0

0

fi

ffi

ffi

fl

and c⊺x “ ´7



Basi
 Set, Basi
 Variables

From now on we deal only with a linear programming problem in

the standard form c⊺x ÝÑ min,Ax “ b, x ě 0 where

A “

»

—

–

a
11

¨ ¨ ¨ a
1n

.

.

.

.

.

.

.

.

.

am1

¨ ¨ ¨ amn

fi

ffi

fl
, b “

»

—

–

b
1

.

.

.

bm

fi

ffi

fl

We 
an assume that rpAq “ rprA|bsq “ m (i.e. the system Ax “ b

has solutions and no equation is redundant).

De�nition

A basi
 set B “ ti
1

, . . . , imu Ă t1, . . . , nu is a set of m elements

su
h that 
olumns ki
1

, . . . , kim of the matrix A are linearly

independent. The variables xi
1

, . . . , xim are 
alled basi
 variables.

The other variables are 
alled non-basi
.



Example

Consider a linear programming problem

c⊺x ÝÑ min, Ax “ b, x ě 0 where

A “

„

2 1 1 0

´1 3 0 1



, b “

„

8

3



There are

`

4

2

˘

“ 6 basi
 sets, i.e. every set of 2 elements is basi
.



Example

Consider a linear programming problem

c⊺x ÝÑ min, Ax “ b, x ě 0 where

A “

„

2 ´6 1 0

´1 3 0 1



, b “

„

8

3



There are 5 basi
 sets

B
1

“ t1, 3u,B
2

“ t1, 4u,B
3

“ t2, 3u,B
4

“ t2, 4u,B
5

“ t3, 4u.



Basi
 Solution and Basi
 Feasible Solution

De�nition

Let B be a basi
 set. The unique solution xB P R
n
of the system of

linear equations Ax “ b with xi “ 0 for i R B is 
alled a basi


solution. The basi
 set B su
h that xB ě 0 is 
alled a feasible

basi
 set and the solution xB is 
alled a feasible basi
 solution.

Otherwise the basi
 set B and the basi
 solution xB are 
alled

infeasible.

Theorem

Basi
 feasible solutions 
orrespond to verti
es of the polytope X

given by the 
onditions Ax “ b, x ě 0.

Proof.

The equation

ř

jPt1,...,nu´B
xj “ 0 de�nes a supporting hyperplane

whi
h interse
ts with the feasible region in exa
tly one point, that

is in a vertex.



Example

Consider a linear programming problem

c⊺x ÝÑ min, Ax “ b, x ě 0 where

A “

„

2 1 1 0

´1 3 0 1



, b “

„

8

3



The set B “ t3, 4u is basi
. The 
orresponding basi
 solution

xB “
“

0 0 8 3

‰⊺
is feasible sin
e xB ě 0. It 
orresponds to

the vertex p0, 0q of a polytope given by the original problem.

The set B “ t2, 4u is basi
. The 
orresponding basi
 solution

xB “
“

0 8 0 ´21

‰⊺
is infeasible sin
e xB ğ 0. The basi
 set

B “ t2, 4u is infeasible.



Basi
 Feasible Solution

Let B “ txi
1

, . . . , ximu be a basi
 set. Let

xB “
“

xi
1

xi
2

¨ ¨ ¨ xim
‰⊺

and let

xD “
“

xj
1

xj
2

¨ ¨ ¨ xjn´m

‰

⊺
, where

tj
1

, j
2

, . . . , jn´mu “ t1, 2, . . . , nu ´ B and j
1

ă j
2

ă . . . ă jn´m.

Moreover, let AB be a submatrix of A 
onsisting of 
olumns

i
1

, . . . , im and let AD be submatrix of A 
onsisting of 
olumns

j
1

, . . . , jn´m. Then

Ax “ b ðñ ABxB ` ADxD “ b ðñ xB ` A´1

B
ADxD “ A´1

B
b.

Therefore, the basi
 solution is given by xD “
“

0 . . . 0

‰

⊺
and

xB “ A´1

B
b. This means a basi
 solution 
an be 
omputed by

performing elementary row operations on the matrix rA|bs until the


olumns i
1

, . . . , im will be equal to

»

—

—

—

–

1

0

.

.

.

0

fi

ffi

ffi

ffi

fl

,

»

—

—

—

–

0

1

.

.

.

0

fi

ffi

ffi

ffi

fl

, . . . ,

»

—

—

—

–

0

0

.

.

.

1

fi

ffi

ffi

ffi

fl

,

respe
tively.



Example

Consider a linear programming problem

c⊺x ÝÑ min, Ax “ b, x ě 0 where

A “

„

2 1 1 0

´1 3 0 1



, b “

„

8

3



The set B “ t2, 4u is basi
. We 
ompute the basi
 solution by

using elementary row operations on rA|bs to get the 2´nd 
olumn

equal to

„

1

0



and the 4´th 
olumn equal to

„

0

1



.

„

2 1 1 0 8

´1 3 0 1 3



r
2

´3r
1ÝÑ

„

2 1 1 0 8

´7 0 ´3 1 ´21



Therefore if x
1

“ x
3

“ 0 (non-basi
 variables) then

x
2

“ 8, x
4

“ ´21 (basi
 variables). Sin
e x
4

ă 0 the basi
 solution

xB “
“

0 8 0 ´21

‰⊺
is infeasible.



Next Le
ture - Simplex Method

We will learn an algorithm, 
alled simplex method, for �nding an

optimal solution. Simplex method starts from a basi
 feasible set

and with ea
h turn moves to another basi
 feasible solution

de
reasing the obje
tive fun
tion.


